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Quantum teleportation of nonclassical wave packets: An effective multimode theory
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We develop a simple and efficient theoretical model to understand the quantum properties of broadband
continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode
teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal
characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical
channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case
of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.
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I. INTRODUCTION

As a striking example of quantum communication protocol,
teleportation was discovered early on in the development of the
field of quantum information processing. With either qubit [1]
and continuous variable flavors [2], experiments were soon
to follow [3,4]. Until now, continuous variable teleportation
has only been performed with the class of so-called Gaussian
states [4–6]. However, this alone is not sufficient for universal
quantum computation where non-Gaussianity of some kind
has been shown to be necessary [7]. Although non-Gaussian
nonclassical states of light that would allow for such universal
operations have been available experimentally for some time
in the continuous variable regime [8–10], the major challenge
of actually manipulating these states in some Gaussian pro-
tocol context beyond simple generation has remained mostly
unaddressed.

Some recent experimental work has reported on successful
continuous variable teleportation of a strongly nonclassical
state of light [11]. In this experiment, a close approximation
of a Schroedinger’s cat state generated with the photon-
subtraction protocol [12] is sent through a continuous variable
teleporter. The quality of teleportation is high enough that
the output teleported state is also a nonclassical state with
a negative Wigner function. The use of a non-Gaussian
nonclassical state as an input state is the first most noticeable
feature of this experiment. Although Gaussian states telepor-
tation has been amply studied, due to the complex nature of
non-Gaussian states and especially mixed non-Gaussian states,
only few general results exist for this case. May be the most
general condition for successful teleportation of non-Gaussian
nonclassical states is the necessary but not sufficient 2/3
threshold on fidelity [13]. In [14], the theoretical work closest
to the experimental conditions of [11], teleportation success
is investigated for the case of a mixture of vacuum |0〉 and
one photon |1〉 as an input state. On top of these difficulties,
to accommodate with the transient nature of the input state
used, the teleporter used in [11] operates on a broad range
of frequencies. This is the second most noticeable feature of
this experiment in contrast with typical continuous variable
experiments, which only manipulate narrow sidebands of
light. To our knowledge, there are actually very few results
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relevant to the case of multimode teleportation. In [15],
multimode teleportation of a quantum field is investigated from
the point of view of temporal fluctuations using the photon
correlations function g(2)(τ ). In [16], it is shown how to adapt
the single-mode teleportation protocol of [17] to teleportation
of a multimode field with finite teleportation bandwidth. Both
these works attack the problem of multimode teleportation
from the Henseinberg picture and additional considerations
are required to handle the case of non-Gaussian nonclassical
input states.

Our main objective in this paper is to attempt to answer both
these issues with a theoretical model as simple and efficient as
possible. In Sec. II, we first briefly introduce the teleportation
protocol with its usual phase-space formulation and define a
criterion of success. In Sec. III, we describe a realistic model
of a nonclassical non-Gaussian state that faithfully models
the input states of [11]. With this model, we are able to
predict the success of teleportation in a way similar to [14]. In
Sec. IV, we use the Heisenberg picture to approach multimode
teleportation as teleportation of a quantum field. We then show
how to reduce this quantum field to a single effective mode that
describes the temporal properties of the input state. In Sec. V,
we show how to take into account any external noise spectrum
in the broadband teleportation operation. Finally, in Sec. VI,
we compare our model with the recent experimental results
of [11] and conclude.

II. BASICS

Deciding on success of continuous variable teleportation
is a nontrivial problem, as it is closely related to the kind of
input states and entanglement used, as well as the specific
protocol or quantum circuit teleportation is actually used for.
For the Gaussian case, the fidelity F = 〈ψin|ρ̂out|ψin〉 is the
usual figure of merit, though F loses much of its meaning as
a benchmark figure when more general non-Gaussian mixed
states are used as input states. While Gaussian states can be
fully characterized by their first and second moments, which
allow figures like fidelity to have some general and useful
meaning, such an approach fails with non-Gaussian states.
Because nonclassicality itself is an ambiguous property for
continuous variable systems with infinite-dimensional Hilbert
spaces, it is even more complex to decide on a relevant success
criterion for continuous variable teleportation of nonclassical
quantum states. In this paper, we consider the input W in
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and output W out Wigner functions of a teleportation process.
We adopt as a criterion of success the successful transfer
of negative features of the Wigner function. Provided W in

is itself a negative Wigner function and having for W in a
precise algebraic expression including the relevant experi-
mental parameters, we want to know what the requirements
are on these parameters and on the teleportation process for
successful retrieval of negativity in W out. Furthermore, we
restrict ourselves to the Braunstein-Kimble scheme described
in [17] where the teleportation can be expressed in phase space
as the following convolution:

W out = W in ◦ Ge−r , (2.1)

with r the Einstein-Podolsky-Rosen (EPR) correlation param-
eter and Gα(q,p) a normalized Gaussian of standard deviation
α (h̄ = 1). In this case, teleportation of nonclassical features
such as negativity has been shown to require 3 dB of squeezing
[13], or equivalently a vacuum fidelity of F � 2/3, which is
also called the no-cloning limit [18]. Precisely speaking, 3 dB
is a lower bound for unity gain teleportation of negativity of any
pure or mixed state. Recent work has shown that, given the pre-
cise shape of the input state and amount of anticorrelation in the
teleportation quantum channel, there actually exists strategies
to surpass the 3-dB threshold by tuning the gain of teleportation
[14]. However, unless extremely pure entanglement is used,
typical experimental antisqueezing imposes virtually unity
gain operation. Furthermore, as this tuning is input dependent,
the teleportation setup loses its universal characteristic.

The 3-dB threshold is only a lower bound to negativity
teleportation and we would like to have a model that predicts
better the success or failure of negativity teleportation. In
the general case, this is too broad a problem to handle as
teleportation is known to be input dependent. From now on, we
focus our analysis on the specific case of the photon-subtracted
squeezed vacuum that was used as an input state in [11]. This
family of quantum states has recently attracted a lot of interest
both experimentally [8–10] and theoretically [12,19,20]. From
an optical parametric oscillator (OPO) producing a squeezed
vacuum Ŝs |0〉 with squeezing parameter s called the signal
mode, a fraction R of the output called the trigger mode is
tapped and sent to a photon resolving detector to herald non-
Gaussian states. Various single-mode and multimode models
exist for this protocol [12,19,20], and they are essentially
equivalent in the limit of small s and R. To start, we will assume
that a detection event projects Ŝs |0〉 on the photon-subtracted
squeezed vacuum âŜs |0〉 equal to a squeezed photon Ŝs |1〉.
The Wigner function W ref of this reference state is written

W ref(q,p) = 2(e2sq2 + e−2sp2 − 1/2)G1/
√

2(esq,e−sp),

(2.2)

and has a maximal central negativity of W ref(0,0) = −1/π .
Although this is a specificity of this particular input state,
from now on we will use the value of the Wigner function
at the origin of phase space as the figure of merit for
negativity teleportation. Applying teleportation equation (2.1)
on Eq. (2.2), we find for output negativity Wref out(0,0)

Wref out(0,0) = (2e−2r + 1)(2e−2r − 1)

π [(1 + 2e−2r ) + 8e−2rsh2(s)]3/2
, (2.3)

which indeed yields Wref out(0,0) � 0 for r � ln
√

2 as ex-
pected. Wref out(0,0) will become negative only if the parameter
r is greater than ln

√
2, equivalent to 3 dB of squeezing.

III. REALISTIC INPUT STATE

Equation (2.3) is, of course, of little interest since an actual
experimental input state will virtually be a mixed state and a
more realistic model of input is required. The experimental
input state used in [11] happens to fit well a simple loss model,
where the experimental Wigner function W in can be modeled
from W ref, the reference state, by applying “beam-splitter
losses” 1 − η equivalent in phase space to the operation:

W in(x,p) = 1

η
(W ref ◦ Gλ)

(
x√
η
,

p√
η

)
, (3.1)

with λ =
√

1−η

2η
[21]. The phase space transformation (3.1)

is derived from the action of a fictitious beam splitter with
transmission coefficient η, which transforms input coherent
states |α〉 into |ηα〉. As was shown in [22], it is also possible to
express the action of this beam splitter with a master equation
acting on the density matrix ρ̂. In this case, we would obtain

d

dt
ρ̂(t) = L[ρ̂(t)], L[ρ̂] = [ρ̂â,â†] − [ρ̂â†,â]. (3.2)

By using the previous algebraic expression (2.2) of W ref

together with the transformation (3.1), we can obtain the exact
expression of W in with any mathematical software. We rather
are interested in the central negativity given by

W in(0,0) = (1 − 2η)/π [1 + 4η(1 − η)sh2(s)]3/2, (3.3)

where the negativity threshold W in(0,0) = 0 depends only
on η: η � 0.5 implies W in(0,0) � 0 (see Fig. 1).Using this
model of imperfect input state, we investigate negativity
teleportation of W in by concatenating Eqs. (3.1) and (2.1).
The two successive Gaussian convolutions are reduced to one,
while the phase space rescaling survives the teleportation.
Eventually W out happens to be written in the same form as
W in,

W out(x,p) = 1

η
(W ref ◦ Gλ′)

(
x√
η
,

p√
η

)
, (3.4)

where λ has been changed to λ′ =
√

λ2 + (e−r )2/η in a way
similar to classical amplifiers input/output SNR rules. We
remark that besides the degradation of the input negativity
W in(0,0), the loss parameter 1 − η has also the effect of
decreasing the effective correlation parameter r to r ′ = r +
ln

√
η < r .In practical terms, this means that both operations

do not commute and losses at the input stage have more effect
on the quality of the overall process than losses at the output
stage. The output center negativity is now expressed as

W out(0,0) = gr (gr − 2η)

π
[
g2

r + 4η(gr − η)sh2(s)
]3/2 , (3.5)

with gr = 1 + 2e−2r (plotted in Fig. 2). As expected for
unity gain teleportation, the W out(0,0) = 0 threshold is still
independent of the squeezing parameter s and can be expressed
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FIG. 1. Input Wigner function negativity W in(0,0) as a function
of η for different values of the squeezing parameter s.

as a function of the two parameters η and r alone by the simple
relation (Fig. 3)

r = ln
√

2/(2η − 1) at threshold. (3.6)

Until now, our model of reference state has assumed a pure
state with an initial density matrix ρ̂ref of the form

ρ̂ref = âŜs |0〉〈0|Ŝ−s â
†. (3.7)

However, to be more faithful to experimentally produced
squeezed photon states, rather than an ideal photon resolving
detector, we should consider the unideal projection properties
of the Geiger silicon Avalanche PhotoDiode (APDs) experi-
mentally used to produce photon subtracted states. Essentially
two mixing mechanisms are at work. First, the on/off character
of the APD makes it only able to detect the presence of
photons without resolving the actual number of them. This
leads quite naturally to a Positive Operator Valued Measure
(POVM) solution to model the APD measurement, as was done
in [23]. However, the effect is rather marginal if we restrict
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FIG. 2. Output Wigner function negativity W in(0,0) as a function
of r for different values of η and s. For a given η, different s curves
cross the W (0,0) = 0 at the same r(η).
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FIG. 3. Negativity threshold as a function of r and η.

ourselves to small squeezing s and small tapping fraction R

and we will actually neglect photon components higher than
n = 1 in the trigger channel. Second, the laboratory APD is
also characterized by a dark count rate, which will produce
false heralding events and induce some statistical mixing of
the target state. When such a false event occurs, no projection
happens on the signal mode as no photon is subtracted and
the signal mode density matrix is just ρ̂false = Ŝs |0〉〈0|Ŝ−s

corresponding to the OPO output squeezed vacuum. We
introduce a parameter ε that reflects this statistical mixing
and write the new reference density matrix ρ̂ ′

ref as

ρ̂ ′
ref = (1 − ε)ρ̂ref + ερ̂false, (3.8)

where ε is related to the modal purity parameter 
 introduced
in [24] by 1 − ε = 
. With ε �= 0, the value of W ref(0,0) is
not optimal anymore, but becomes (Fig. 4)

W ref(0,0) → (1 − ε) · W ref(0,0) + ε · W false(0,0)

= (2ε − 1)/π. (3.9)

Correcting for the effect of Eq. (3.8) in the input negativ-
ity (3.3), output negativity (3.5), and negativity threshold (3.6)
is just a matter of calculating how the Wigner function
associated to ρ̂false, Wfalse(x,p) = G1/

√
2(esx,e−sp), evolves

in the teleportation process. This is possible since all the
transformations used until now have been linear and therefore
we can write

Wα(0,0) → (1 − ε)Wα(0,0) + ε

η
(Wfalse ◦ Gλα )(0,0),

(3.10)

with α ∈ {in,out}, λin = λ, and λout = λ′. We find for the
corrected input negativity the new expression

W in(0,0) → W in(0,0) + 2εη
1 + 2(1 − η)sh2(s)

π [1 + 4η(1 − η)sh2(s)]3/2
,

(3.11)

as well as

W out(0,0) → W out(0,0)

+ 2εη
gr + 2(gr − η)sh2(s)

π
[
g2

r + 4η(gr − 2η)sh2(s)
]3/2 (3.12)

for the corrected output negativity. Input state negativity
threshold W in(0,0) = 0 now gives the following relation
between η and ε:

ε = (2η − 1)/2η[1 + 2(1 − η)sh2(s)]. (3.13)
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FIG. 4. (a) Input negativity threshold
W in(0,0) = 0 as a function of η, s, and ε.
(b) Input negativity W in(0,0) as a function of
η for different values of s and ε.

For nonzero ε, the input threshold becomes dependent on the
squeezing parameter s. We expect the same dependence on
the output negativity threshold corrected for ε, which is now
expressed with the following quadratic equation:

0 = g2
r + 2b(ε,s)ηgr − c(ε,s)η2, (3.14)

with b(ε,s) = ε[1 + 2 sh2(s)] − 1 and c(ε,s) = 4ε sh2(s).
Keeping the only physical solution in (3.14), the
negativity teleportation threshold corrected for ε becomes
(Fig. 5)

r = ln

(
2

η(
√

b2 + c − b) − 1

)1/2

. (3.15)

In summary, we have developed in this section a realistic
yet simple model to account for the phase-space properties of
photon subtracted squeezed vacuum states. With that model,
we have considered the effect of teleportation on these states
and are able to predict the success of negativity teleportation.
In the next section, we will now show how to take into account
the multimode aspect of these input states and the multimode
aspect of broadband teleportation.

IV. MULTIMODE TELEPORTATION

The APD triggered non-Gaussian state has been shown to
have complex multimode properties [20,25]. On one hand,
the OPO output beam is a continuous wave with a specific
squeezing spectrum, while, on the other hand, the APD triggers
that herald a non-Gaussian state happen at precisely defined
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FIG. 5. Influence of ε and s on the negativity threshold
W out(0,0) = 0 at the output of teleportation.

times. Intuitively one expects that a given APD trigger induces
non-Gaussian statistics in the immediate time vicinity of the
trigger event to the extent of the OPO bandwidth. When the
number of triggering events increases as R and s increase and
more photons end up in the trigger channel, more complex
time interference phenomena arise on the signal mode between
neighboring photon subtracted wave packets [26]. Fortunately,
in the limit of small s and small R, a simple two modes
picture allows one to efficiently describe the input state and
capture most of its experimental properties [19]. It involves
two effective wave-packet modes, Âs for the signal mode and
Ât for the trigger mode, defined by

Âi =
∫

fi(ω)âωdω, (4.1)

with i ∈ {s,t}. Preserving the commutators [Âi,Â
†
i ] = 1 re-

quires
∫ |fi(ω)|2dω = 1. While the exact form of ft (ω) is not

really relevant, since the APD detection time is typically much
shorter than any other time scale in these continuous wave
experiments, fs(ω) will describe the temporal characteristic of
the heralded non-Gaussian state. This function will be defined
by the OPO bandwidth, as well as the possible filtering cavities
used on the trigger channel, and numerical optimization has
shown that the optimal form (small s and R, wide filtering
cavities) can be taken as

f (ω) = γ /π [γ 2 + (ω0 − ω)2], (4.2)

with γ the OPO decay rate including intracavity losses and
ω0 the light beam carrier frequency [26]. In short, an APD
heralded state behaves as a traveling wave packet of light with
non-Gaussian characteristics. Using the definition of Âs in
Eq. (4.1), we return to a pure single-mode model for the input
state that we write as

|ψ〉 = e−s(Â†2−Â2)/2Â†|0〉. (4.3)

This expression is still an approximation of reality in the sense
that a true multimode description as done in [20] would require
an extension of a broadband squeezing operator ŜB on a basis
of adequately chosen orthogonal functions {fn(ω)}. In this
case, ŜB is expressed as

ŜB = exp

[
−

∫
d

2π

ζ ()

2
(Â†

Â
†
− − ÂÂ−)

]
, (4.4)
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with Â = â(ω0 + ). In practice, once a signal mode fs = f0

is chosen, the other modes n �= 0 are traced out, which leads
to mixing of the density matrix to the extent of the multimode
entanglement present in ŜB between all modes n:

ρ̂B = trn�=0(Â0ŜB |0〉〈0|Ŝ†
BÂ

†
0). (4.5)

This multimode entanglement is quantitatively tracked by
the function ζ (). A special case happens when ζ is a
constant at every frequency. Then the operator ŜB can be
exactly factorized on the orthogonal basis {fn(ω)} and the
expression (4.3) becomes exact. In the general case of a
nonconstant function ζ , the expression (4.3) is nevertheless
useful as it only neglects a small amount of entanglement
between the different orthogonal modes n if s is small. As a
result, we will use expressions (4.1) and (4.3) for our following
analysis of multimode teleportation.

To investigate how this multimode aspect translates quan-
titatively, we express in the Heisenberg picture the relation
between input (x̂in,p̂in) and output (x̂out,p̂out) quadrature
operators of teleportation as

x̂out = gxx̂in − 1 + gx√
2

e−r v̂x + 1 − gx√
2

e+r ŵx, (4.6)

p̂out = gpp̂in + 1 + gp√
2

e−r ŵp − 1 − gp√
2

e+r v̂p, (4.7)

with (v̂x,v̂p) and (ŵx,ŵp) two auxiliary modes in the vacuum
state [27]. We first consider the unity gain case gx = gp = 1,
where the input/output relations (4.6) and (4.7) simplify to

x̂out = x̂in −
√

2e−r v̂x, p̂out = p̂in +
√

2e−r ŵp. (4.8)

We notice that the input modes x̂in, p̂in and output modes
x̂out, p̂out can actually represent any frequency mode ω and we
define in the same way as in Eq. (4.1) two new modes, the
input Âin and output Âout wave-packet modes, by

Âin =
∫

fs(ω)âin(ω)dω, Âout =
∫

fs(ω)âout(ω)dω, (4.9)

as well as the input and output wave-packet quadratures
(X̂in,P̂in) and (X̂out,P̂out) relevant for wave-packet teleporta-
tion. We can directly rewrite the teleportation input/output
relationship (4.8) in the form

X̂out = X̂in −
√

2
∫

fs(ω)e−r(ω)v̂xdω, (4.10)

P̂out = P̂in +
√

2
∫

fs(ω)e−r(ω)ŵpdω, (4.11)

where we have introduced r(ω) as the spectrum of EPR cor-
relations resolved in frequency. From the physical properties
of the OPO cavities used for EPR squeezing generation, it is
possible to deduce the expression of r(ω) from the squeezing
spectrum S− (ω) = 〈�2x̂

†
sqd(ω)�2x̂sqd(ω)〉/〈�2x̂vac〉. See, for

example, Ref. [16] for details. We now define an effective
broadband EPR parameter reff by

e−reff =
∫

fs(ω)e−r(ω)dω =
∫

fs(ω)S−(ω)dω (4.12)

and therefore Eqs. (4.10) simplify themselves to

X̂out = X̂in −
√

2e−reff v̂x, P̂out = P̂in +
√

2e−reffŵp.

(4.13)

Since the auxiliary modes v̂x and ŵp are effectively traced
out on the vacuum state at all frequencies, it is possible to
take them outside of the frequency domain integrals to obtain
the formulation (4.13). We notice that Eqs. (4.13) are written
in the same way as Eqs. (4.8). Thanks to the linearity of
transformation (4.8) and the linear model of input state (4.1) in
the Heisenberg picture, multimode teleportation is equivalent
to familiar single-mode teleportation, where an effective
broadband EPR parameter reff has been defined to take into
account the finite bandwidth of entanglement. In short, all the
previous formulas of Sec. III for unity-gain teleportation are
readily usable with the simple change r → reff.

The case of nonunity gain multimode teleportation is
much more complex and we conclude this section with a
brief overview of the nonunity gain case. First we introduce
the transfer functions gx(ω) and gp(ω), which represent the
effects in frequency space of the classical channel. gx and
gp are in general complex-valued functions verifying the
Kramers-Kronig relations. We are now facing the problem
that the output quadratures operators of teleportation will not
be Hermitian operators anymore, in general. By taking an
approach similar to Eq. (4.10), we obtain for the position
quadrature

X̂nonunit
out =

∫
fs(ω)gx(ω)x̂in(ω)dω

− 1√
2

(
e−reff +

∫
fs(ω)gx(ω)e−r(ω)dω

)
v̂x

+ 1√
2

(
e+reff −

∫
fs(ω)gx(ω)e+r(ω)dω

)
ŵx.

(4.14)

where X̂nonunit
out is the output teleported mode in the nonunity

gain regime. To clean this expression, we define the two
complex numbers g±

x :

g±
x =

∫
fs(ω)gx(ω)e±(r(ω)−reff)dω, (4.15)

so that Eq. (4.14) simplifies to

X̂nonunit
out =

∫
fs(ω)gx(ω)x̂in(ω)dω

− 1 + g−
x√

2
e−reff v̂x + 1 − g+

x√
2

e+reffŵx, (4.16)

with a similar expression for P̂ nonunit
out . By further separating

X̂nonunit
out and P̂ nonunit

out in real and imaginary parts as done
in [16], it is possible to obtain from this model observable
results. Equations (4.16) and (4.15) show that the output
modes will get contaminated by antisqueezing when |gx(ω)|
and |gp(ω)| are different from 1. Furthermore, the expression∫

fs(ω)gx(ω)x̂in(ω)dω hints that the wave-packet shape from
input to output will get modified by the teleportation process.
An interesting and practical situation is the case of pure linear
delay gx(ω) = gp(ω) = exp[−iω �t]. If such a phase factor
is added by the classical channel to the output modes, its full
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effect can be absorbed in x̂in and auxiliary modes v̂x , ŵx by
using their Fourier transforms,

x̂in(ω) → x̂in(ω)e−iω�t = 1√
2π

∫
dt x̂in(t)eiω(t−�t),

so that X̂nonunit
out is related to X̂out by a simple time

translation:

X̂nonunit
out (t) = X̂out(t + �t). (4.17)

As a matter of fact, this is exactly how the experimental
teleportation setup used in [11] behaves, where an optical delay
line is used to match the phase answer of the classical channel
and cancel this �t phase factor.

In this section, we have developed an efficient model of
unity-gain multimode teleportation with the added benefit of
being able to use all the results of the previous section. In the
next section, we will further use this model to investigate the
effects of classical sources of noise in the classical channel
and their effect on the teleportation process.

V. NOISE MODEL

In this section, we try to better understand the effect of
classical sources of noise on the teleportation process. This
is an important point to consider as, compared to the single
sideband regime, it is much harder to experimentally insulate
from external noise a broad range of frequencies at the same
time. To throw light on that issue, we first look for a master
equation describing the effect of teleportation on the density
matrix ρ̂. For that, we start by fully detailing Eq. (2.1) with
input W and output W ′:

W ′
(x,p) = 1

2πσ 2

∫ ∫
dx ′dp′W(x ′,p′)e

− (x−x′ )2+(p−p′)2
2σ2 . (5.1)

We now assume that σ → σ (t) has a time dependence.
We express the first derivative of W ′ with respect to
time t ,

d

dt
W ′

(x,p) = 2

σ (t)

d

dt
σ (t)

(
− W ′

(x,p)

+ 1

2σ 2

∫ ∫
dx ′dp′

2πσ 2
W(x ′,p′) × [(x − x ′)2

+(p − p′)2]e− (x−x′ )2+(p−p′)2
2σ2

)
, (5.2)

and the second derivative of W ′ with respect to position x,

∂2
xW ′

(x,p) = − 1

σ 2
W ′

(x,p) + 1

σ 4

∫ ∫
dx ′dp′

2πσ 2

× (x − x ′)2W(x ′,p′)e
− (x−x′ )2+(p−p′)2

2σ2 . (5.3)

We immediately find the following differential equation for
W ′

(x,p;t),

d

dt
W ′

(x,p;t) = 1

2
[∂tσ

2(t)]�W ′
(x,p;t), (5.4)

where � = ∂2
x + ∂2

p. We choose σ to be σ (t) = √
2κ ′t with

κ ′ a constant decay rate, so that Eq. (5.4) simplifies itself to a
pure diffusion equation,

d

dt
W ′

(x,p;t) = κ ′�W ′
(x,p;t). (5.5)

Then, by using correspondence rules between the phase space
formalism and the density matrix formalism [28], we find from
Eq. (5.5) the following master equation for ρ̂:

d

dt
ρ̂ = κ ′(2â†ρ̂â + 2âρ̂â†

− â†âρ̂ − ââ†ρ̂ − ρ̂â†â − ρ̂ââ†), (5.6)

which can be equivalently written as

d

dt
ρ̂ = L[ρ̂], L[ρ̂] = κ ′[â†,[ρ̂,â]] + κ ′[â,[ρ̂,â†]]. (5.7)

The master equation (5.6) is the well-known damping process
for the harmonic oscillator. Equations (4.8) look therefore
similar to quantum Langevin equations, where the terms√

2e−r v̂x and
√

2e−r v̂p are nothing other than thermalization
terms. We would intuitively add the effect of any classical
source of noise directly in Eqs. (4.8) by writing

x̂out = x̂in −
√

2e−r v̂x −
√

2Nx ŷ,
(5.8)

p̂out = p̂in +
√

2e−r ŵp +
√

2Npẑ,

where we have introduced two new auxiliary vacuum modes
ŷ and ẑ and where we first are considering the single-mode
case. Nx and Np describe the amplitude of noise normalized
to vacuum and added at the output of teleportation on top
of finite squeezing. This noise can arise independently for
both quadratures from imperfect electronics in the classical
channel, for example. The most natural case is for noise to be
uncorrelated with quadrature angle and we can assume Nx =
Np = N to be the average noise amplitude. We remember
that all auxiliary modes appearing in the Heisenberg picture
teleportation equations are traced out on the vacuum state and
are uncorrelated. Therefore, it would be natural to redefine a
correlation parameter r ′ modified by the amount of noise with
the simple relation

e−r → e−r ′ = e−r + N , (5.9)

so that Eq. (5.8) would be written as Eq. (4.8). However, this
approach is wrong and the correlation parameter r ′ cannot be
redefined in amplitude but should be redefined in power by
writing

e−2r → e−2r ′ = e−2r + N 2. (5.10)

It is possible to justify this expression rigorously by estab-
lishing the link between Heisenberg picture equations (4.8)
and the original phase space formulation of Eq. (2.1). For that
purpose, we introduce the characteristic function χ (α) related
to the density matrix ρ̂ by the Weyl expansion formula

χ (α) = tr(ρ̂D̂α) = 〈D̂α〉, ρ̂ =
∫

dαχ (α)D̂−α, (5.11)
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FIG. 6. Influence of the noise amplitude N on the ratio r ′ and r .

where D̂α is the displacement operator exp[αâ† − α∗â]. If
we write α = (u + iv)/

√
2, then χ and W are related by the

following Fourier transform:

W (x,p) = 1

4π2

∫ ∫
du dv χ(u,v)eivx−iup. (5.12)

Now if we consider the unitary transformation

x̂ → x̂ ′ = x̂ −
√

2γ v̂x, (5.13)

with an auxiliary mode (v̂x,v̂p) having commutators [x̂,v̂x] =
[p̂,v̂x] = 0 and [v̂x,v̂p] = i, then the displacement operator
D̂α is changed to

D̂α → D̂′
α = D̂α ⊗ D̂v̂

α′ = D̂α ⊗ e+i
√

2uγ v̂p , (5.14)

with D̂v a displacement operator acting on mode v̂ and α′ =
(−√

2γ × u + i × 0)/
√

2. To express the new characteristic
function χ ′, we have to evaluate the trace of D̂v taken on the
vacuum for mode v̂:

tr
(|0〉〈0|D̂v

α′
) = 〈0|D̂v

α′ |0〉 = e−|α′ |2/2. (5.15)

This lead to the expression of χ ′(u,v),

χ ′(u,v) = χ (u,v)e−γ 2u2/2, (5.16)

which immediately translates to a Gaussian convolution, such
as Eq. (2.1), for the Wigner function W having the Fourier
relationship (5.12) between χ and W . In this case, we obtain
the semiconvolution

W ′(x,p) = 1√
2πγ

∫
dx ′W (x ′,p)e−(x−x ′)/2γ 2

. (5.17)

By also adding the transformation p̂ → p̂′ = p̂ + √
2γ ŵp,

we would finally obtain Eq. (2.1) provided we define γ as
equal to exp[−r]. If we now also consider the added noise
term

√
2N ŷn in Eqs. (5.8), χ ′(u,v) would be written

χ ′(u,v) = χ(u,v)e−(γ 2+N 2)u2/2, (5.18)

which justifies to redefine the correlation parameter r in power
and not in amplitude as

r → r ′ = r − ln
√

1 + N 2e2r . (5.19)

We see that if the amount of noise N is high, it is possible
that r ′ becomes negative (see Fig. 6), which simply means that
after factoring in the effect of N , quantum teleportation would
perform worse than classical teleportation with r = 0 andN =
0. More interesting is the case of broadband noise, when N →
N (ω) contaminates the whole frequency range relevant for
teleportation. In the same way that we had deduced Eqs. (4.13)
from Eqs. (4.8) using the wave-packet operator (4.1), we define
an effective noise level Neff = ∫

fs(ω)N (ω)dω and write

X̂out = X̂in −
√

2e−reff v̂x −
√

2Neffŷn,
(5.20)

P̂out = P̂in +
√

2e−reffŵp +
√

2Neffẑn,

so that finally it is possible to take into account the effect of
N (ω) by redefining reff as in Eq. (5.21):

reff → r ′
eff = reff − ln

√
1 + N 2

effe
2reff . (5.21)

In this section, we have shown how to estimate the effect of
external classical noise sources on the output teleported modes.
This simple model only works for Gaussian entanglement and
for sources of uncorrelated Gaussian noise. By Gaussian noise,
we mean that the underlying quantum state used to trace out
auxiliary quantum modes ŷ and ẑ is Gaussian. In this case,
external classical noise becomes essentially indistinguishable
from noise added by the teleportation itself due to finite
squeezing. Furthermore, our model is able to take into account
any spectrum of noise N (ω) by using the wave-packet mode
function fs to estimate an effective level of noise Neff added
to the teleportation.

VI. BACK-TESTING AND CONCLUSION

The first step to test the validity of our results is to check that
the model of Sec. III we used for photon subtracted squeezed
vacuum states works well with the experimental input states
used in [11]. For that we need to estimate three parameters:
the squeezing parameter s, the loss parameter 1 − η, and the
APD dark noise parameter ε. In [11], a direct measure of the
APD dark noise and event counts gives for ε a value of 0.013.
With the help of quantum tomography of the input squeezed
vacuum state Ŝs |0〉 the squeezing parameter s is estimated
to be 0.28. This tomography is done using the wave-packet
function fs as a filter of the measured homodyne currents and
without conditioning on the APD triggers. This means that
s is actually an effective squeezing parameter in the sense
of Eq. (4.12), taking into account the bandwidth of the OPO
used to generate the state Ŝs |0〉. Finally, to estimate the value
of η, we use the equation (3.11) with the value of W in(0,0)
obtained from a quantum tomography of the input state and
obtain η = 0.80. This value is slightly different from the one
estimated in [11] due to the nonzero value of ε. With these
three parameters known, we can numerically simulate W in

using the results of Sec. III and compare it to the reconstructed
Wigner function with the overlap formula,

O(Wa,Wb) = 2π

∫ ∫
dx dp Wa(x,p)Wb(x,p). (6.1)

However, this formula does not work so straightforwardly in
our case: if Wa and Wb are mixed states and even though
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Wa = Wb, the overlap given by formula (6.1) will not be 1 but
rather the purity of Wa . We therefore use a modified version
of the above formula with a renormalization factor taking into
account the purity of both quantum states:

O ′(Wa,Wb) = O(Wa,Wb)

[O(Wa,Wa)O(Wb,Wb)]1/2 . (6.2)

With this modified overlap formula (6.2), we calculate an
overlap of 0.987 between our model and the reconstructed
state. The L2 Euclidian distance d(Wa,Wb) defined by

d(Wa,Wb) =
(∫ ∫

dx dp |Wa(x,p) − Wb(x,p)|2
)1/2

(6.3)

between the two states is found to be 0.05. Finally, one could
also choose to maximize O ′ rather than fitting the value
of W in(0,0) to estimate η. However, because this approach
can lead to a value of W in(0,0) significantly different from
the experimentally measured value, we chose to directly fit
W in(0,0) instead.

The second step is to estimate the broadband EPR parameter
reff, again choosing one of two possible methods. A first
method would consist of directly measuring spectra of the
EPR correlations between Alice and Bob and then using
the mode function fs to obtain an estimation of reff. While
this method automatically takes into account homodyne finite
efficiency and phase errors, it does not probe any imperfections
of the classical channel. A second method would consist of
estimating reff with a measure of vacuum teleportation fidelity,
with the added benefit of taking into account the whole process
of teleportation. In the simple case of the vacuum state |0〉 as an
input state, the teleportation fidelity and the EPR correlations
parameter r are directly related by the relation

Ftele = 1/(1 + e−r ). (6.4)

To measure the fidelity Ftele, we first make a tomographic
reconstruction of the teleported vacuum state. To specifically
estimate reff, we consider the wave-packet vacuum state |0〉fs

defined by

|0〉fs
=

∫
dω fs(ω)|0〉ω. (6.5)

As before, this is simply done by using the wave-packet mode
function fs as a filtering function in quantum tomography.

With this second method, reff is estimated to be 0.795
in [11].

Finally, the third and final step consists of checking our
prediction of W out and particularly W out(0,0) using all the
known parameters. This is done by evaluating Eq. (3.12) and
we obtain the value W out(0,0) = −0.0243, in agreement with
the measured output negativity of −0.022 in [11]. As before,
since ε �= 0, the value of W out(0,0) estimated here is slightly
different from the estimation found in [11]. We also check the
overlap O ′ between the measured state and the predicted state
and find a value of 0.988. The L2 distance between the two
states is 0.04.

Overall, the results of Sec. III are numerically in good
agreement with the experimental results of [11]. Our model
uses a set of only three parameters and even though more
complex models for photon subtracted squeezed vacuum states
exist, we found it was not necessary to use them. This confirms
the validity of our initial assumption to only consider the small
R, small s regime. Our approach to multimode teleportation
in Sec. IV has the double benefit of intuitively picturing
broadband operations in term of wave packets, while at the
same time allowing us to use the usual results of single-mode
teleportation with simple renormalization prescriptions.

In conclusion, we have developed an efficient yet simple
framework to model the properties of multimode continuous
variable teleportation. Although this work is tied to a specific
class of non-Gaussian states, it is natural to ask if a similar
approach can handle more general non-Gaussian states. As
it is known that any Wigner function can be approximated
by successive displacements and photon subtractions, it is in
principle possible to describe any non-Gaussian states in a
systematic way that would be compatible with the Gaussian
convolutions needed in Sec. III. A second and harder issue
would be to identify criteria more robust than negativity to
decide on the success of teleportation and Gaussian operations
in general in the context of non-Gaussian nonclassical input
states.
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